Hydro-mechanical hypoplastic models for unsaturated soils under isotropic stress conditions

W. Fuentes*, Th. Triantafyllidis

Institute of Soil Mechanics and Rock Mechanics, Karlsruhe Institute of Technology KIT, Engler-Bunte-Ring 14, 76131 Karlsruhe, Germany

A B S T R A C T

The current work presents two hypoplastic models to predict the hydraulic and mechanical behavior of the unsaturated soils [1–5]. Its solution requires the introduction of at least two constitutive models, one governing the mechanical behavior of the soil and the second describing the hydraulic behavior of the water in the pores [4]. The first interrelates incrementally a constitutive stress \(\sigma \) [6] with the solid deformation \(\varepsilon \) whereas the second links the degree of saturation \(S_w \) with the suction \(s = p_c - p_w \) defined as the difference between the pore air pressure \(p_a \) and the pore water pressure \(p_w \).

It is well accepted that the agreement of the simulations with the observed experimental behavior is only possible by coupling the hydraulic and mechanical constitutive models [7–12]. Since the work of Alonso et al. [13], a large number of mechanical constitutive models incorporated the dependence of the hydraulic variables (\(s \) and \(S_w \)) and have performed well on the simulation of some experimental curves (see [14,6,15,11] for extensive review of models). A first generation of models were based on the net stress \(\sigma^{net} \) (as constitutive stress) which in terms of the total stress \(\sigma^{tot} \) is defined as \(\sigma^{net} = \sigma^{tot} + p_w \) [16–18]. Nevertheless, they could not reproduce a smooth transition between saturated and unsaturated states and could not describe a unique critical state in the stress space [6,10,11,14]. These facts and others motivated a second generation of models to choose the Bishop stress \(\sigma = \sigma^{net} + p_m - \chi S_w \) as constitutive stress instead, where \(\chi \) is the Bishops parameter, e.g. [19–24,9] among others. Notice that most of the reported models in the literature and all the ones cited herein where developed under the elasto-plastic framework.

For all these elasto-plastic models, the introduction of a loading-collapse surface to reproduce the volume contraction upon wetting is evidently the most popular approach since its original formulation in [13] (see analysis of this approach in [25,11,14]). For isotropic states, this approach leads to a normal consolidation line NCL which depends on the current state of the unsaturated soils and can be defined in the semi-log space of the mean constitutive stress \(p = -1/3 \operatorname{tr} \sigma \) and the void ratio \(e \) by introducing the reference void ratio \(N (e = N = 1\,\text{kPa}) \) and the compression index \(\lambda \). Under this scheme, the initialization of the preconsolidation pressure \(p_c = p_{c0} \) and the adopted functions for \(N \) and \(\lambda \) turns out to be the crucial key that guarantees the success of the model [14]. Finding a method to determine the initial value \(p_{c0} \) is not an easy task. Just as an example, Sun et al. [26] related \(p_{c0} \) with the initial void ratio \(e_0 \) and the current suction \(s \), but doing this allows one to interpret \(e_0 \) as an additional material parameter. Let us add the fact that many models are calibrated with dried slurry samples, and thereby the value of \(p_{c0} \) at the isotropic compression curve is hardly identifiable due to the stiffness smooth degradation. With respect to the functions \(N \) and \(\chi \), the model of Galipolli et al. [21] proposed a dependence with the suction \(s \) and degree of saturation \(S_w \) by incorporating the so-called bounding factor \(\zeta \) representing the magnitude of the interparticle bonding due to water
menisci. Despite of its simplicity and good performance on the simulations, it was not absent from critics; Sheng [14] and Zhou et al. [27] pointed out that this model can produce a yield surface expansion at neutral loading when the suction rises \(s > 0 \) while the mean Bishop stress remains constant \(p \approx \) const, which reveals the model weakness on the intend to fulfill some of the plasticity theory principles. This and other findings motivated Zhou et al. [27] to develop a novel compression law based on the Bishop stress \(\sigma \) whereby \(N \) is a constant and the compression index \(\lambda = \partial s/N \) depends only on the degree of saturation \(S_d \). Surprisingly, with the new formulation the model is able to reproduce most of the capabilities from other models (e.g. as in [21]) and eliminates the limitations commented in [14]. However, the fact that \(N \) is a constant disables the model to simulate very loose materials exhibiting macropores where eventually the void ratio \(e \) could reach values above \(N \), as for example unsaturated silty sand prepared with the moist-tamping method. Above this, let us add that the loading-collapse surface looses its convexity in the transition from saturated to unsaturated states [24,44], fact which demands sophisticated integration algorithms [24,28,29] in order to obtain reliable numerical results. At this point, we note that models which do not require the definition of a yield surface as in hypoplasticity, could be advantageous on their extension for unsaturated soils.

Unfortunately, most of the hypoplastic models for the mechanical behavior of soils are limited to saturated materials [30–33]. Just a few exceptions are found in the literature intended to model the unsaturated soils [34–37]. The model from Niemunis [36] was formulated with a modified Bishop stress proposed by Gudehus [34]. This effective stress is able to simulate volumetric contraction upon wetting observed at isotropic states. Nevertheless, the formulation of the constitutive model did not couple the hydraulic variables and therefore the observed shift of the normal consolidation line (or maximum void ratio line for the case of the hypoplastic version of [30]) is not reproduced. The model from Bauer et al. [35] actually limited its capabilities to monotonic tests under constant gravimetric water content \(w \), fact which disables the possibility to simulate the coupled effects under wetting or drying loading. Probably the most successful model under this framework is the one proposed by Masin and Khalili [37] which is based on the Khalili and Khabbaz effective stress [38]. In contrast to its precedents, this model coupled the hydraulic variables in its formulation. The main limitation actually lies in the selected effective stress (and not on the model) which is not able to distinguish between drying-wetting cycles provided its dependence only with the suction (see [6,10,11] for a discussion). This can be corrected by adopting for example the effective stress proposed by the Khalili and Zargarbashi in [39].

Regarding to the hydraulic constitutive models, basically one can group them into two categories. The first category corresponds to injective functions relating the degree of saturation \(S_d \) and the suction \(s \) with the general form:

\[
S_d = S_d(s)
\]

(1)

implying a unique relation between \(s \) and \(S_d \). Well known examples are Gardner [40], Brooks and Corey [41], van Genuchten [42], Fredlund and Xing [43] among others. All these models can be adjusted very good to a particular main branch, but due to its elastic nature they cannot reproduce the hysteretic behavior exhibited under cycles of wetting and drying.

Constitutive models belonging to the second category do not present this limitation because they are able to produce plasticity at the main branches. Outstanding examples from this category are the models from [8,9,22,23,26,44,45] among many others. All the cited models are formulated within the framework of one-dimensional elastoplasticity and present two yield surfaces, namely the main drying curve and the main wetting curve. These models are not wrong, and actually they reproduce very good the hysteretic behavior including in some cases the incorporation of the void ratio dependence. However, the literature shows an alternative framework which apparently promises similar capabilities without introducing elastoplastic concepts. An outstanding example is the model from Li [46] which employs in its formulation the last suction reversal point to simulate a smooth transition from a path starting in the “elastic” region and approaching to the main branches. This type of formulation, which later on we prove that follows a hypoplastic equation, showed that it is possible to reproduce most of the features exhibited by the elastoplastic models with a simple constitutive equation. Other approaches following a similar type of constitutive equation are found in [47,48], but they have self categorized as “bounding surface” models. The simplicity of these models probably motivated Zhou et al. [27] and Liu et al. [49] to examine the performance when coupling a “hypoplastic” hydraulic model with an elasto-plastic mechanical model. To the authors knowledge, two coupled hypoplastic models for the hydraulic and mechanical component have never been studied with the intent to simulate deformable materials.

This article presents the development of two hypoplastic models for unsaturated materials, one describing the hydraulic component and the other describing the mechanical response. The hydraulic model capabilities include the simulation of the hysteretic behavior at drying and wetting cycles, and incorporates the dependence with the void ratio \(e \). The mechanical model is able to reproduce the influence of the normal consolidation line with the degree of saturation \(S_d \). We have organized the work with the following structure. At the beginning (Section 2) the equations of the hydraulic model without incorporating the void ratio effect are deduced. The extension for deformable materials is shown in Section 3 completing the formulation of the hypoplastic model for the hydraulic component. For the mechanical response, a hypoplastic model is also proposed in Section 4. A short guide to understand and calculate the material parameters is given in Section 6 and some simulations to evaluate the model predictive capabilities are given in Section 7.

2. Hydraulic model for non-deformable materials

In this section we develop a rate-type constitutive model for the hydraulic component linking only the degree of saturation \(S_d \) with the suction \(s \). The proposed model adopts a particular equation to describe the main branches similar to others [46,48,27,49]. Let us represent the equation for the main drying curve as \(S_d = S_d(s) \) and for the main wetting curve as \(S_d = S_d(s) \) as depicted in Fig. 1a. The symbols \(s^d \) and \(s^w \) represent the projection of Point A (see Fig. 1a) at the main branches under constant degree of saturation \(S_d \). Hence, one can establish the following general relation:

\[
s^d = S_d(s) \quad s^w = S_d(s)
\]

(2)

Let us term the “bounding branch” denoted by \(S_d = S_d(s) \) as the main branch that serves as bounding surface for the current state and the suction rate development. Consequently, for a process of drying \(s > 0 \), the bounding branch corresponds to the main drying curve \(S_d(s) \) whereas for a process of wetting \(s < 0 \) corresponds to the main wetting curve \(S_d(s) \). If the current state \((s,S_d)\) lies at its bounding branch, a suitable constitutive model is:

\[
S_d = \frac{\partial S_d}{\partial s}\ s^d \quad \text{for} \quad s = S_d(s)
\]

(3)

Nevertheless, for other states different than this \((s,S_d)\) the hydraulic behavior does not follow Eq. (3) and therefore a modification must be introduced. The experiments show that the slope \(\partial S_d/\partial s \) is smaller for states between the main branches \(S_d = S_d(s) \).
Actually, the slope $\partial Sw/\partial s$ takes its minimum value after a reversal at the bounding branch, see for example Point B in Fig. 1a. In this case, the current slope $\partial Sw/\partial s$ can be calculated as:

$$\frac{\partial Sw}{\partial s} = K_w \frac{\partial S_{nd}^{(d)}}{\partial s}$$

(minimum slope for current S_w) (4)

where $K_w < 1$ is a material parameter. Let us propose the following constitutive model as an interpolation of the slopes given in Eqs. (3) and (4):

$$S_{nd} = \frac{\partial S_{nd}^{(d)}}{\partial s} (K_w - (1 - K_w)Y^{e(s)})$$

where $Y^{e(s)}$ is an interpolation function and takes the function $Y^{d(s)} = Y^d$ for a process of drying ($s > 0$) and $Y^{d(s)} = Y^d$ for wetting ($s < 0$). In Appendix B it is shown that Eq. (5) has the same structure as a classical hypoplastic equation with the form $S_{nd} = L\dot{s} + N_i[s]$. Some interpolation functions $Y^{e(s)}$ have been already proposed in the literature. For example, the model from Li [46] uses a logarithmic scale to perform the interpolation and introduces reversal points in its formulation. We do not consider reversal points because it might lead to overshooting when performing cycles with different suction amplitudes. On the other hand, the model from Zhou et al. [27] proposed a potential relation as the interpolation function, which might be advantageous because it needs only an additional parameter (the exponent). Nevertheless, the potential relation can overestimate the slope at wetting paths ($s < 0$) as seen in some simulations. By trial and error, we have experienced that by interpolating in a logarithmic scale of the suction, the predictive capabilities are improved. The proposed function is similar to the one proposed by [46] but without introducing reversal points:

$$Y^{d(s)} = Y^d = \frac{[\log(s/s\ell)]^{n_w}}{[\log(s/s\ell)]^{n_w}}, \text{ for } s > 0$$

$$= Y^d = \frac{[\log(s/s\ell)]^{n_w}}{[\log(s/s\ell)]^{n_w}}, \text{ for } s < 0$$

where the exponent $n_w \approx 1–10$ is a material parameter that controls the interpolation. To complete the model, we need to introduce the equations describing the main branches $S_w = S_w(s)$ and $S_w = S_w(s)$. Let us select the empirical models proposed by Brooks and Corey B&C [41] and van Genuchten vG [42] as examples. We rewrite their original models replacing the degree of saturation S_w with the effective degree of saturation S_e to simulate the residual water after a long drying process. The effective degree of saturation S_e depends on the residual degree of saturation denoted by S_w. For the sake of generality, we assume that the drying and wetting processes may present different values of S_w. Therefore it will be distinguished between the effective degree of saturation for the main drying curve S_e^d and main wetting curve S_e^w:

$$S_e^d = \frac{S_w - S_{nd}}{1 - S_{nd}^d}; \quad S_e^w = \frac{S_w - S_{nd}}{1 - S_{nd}^w}$$

(7)

where S_{nd}^d and S_{nd}^w are the residual degree of saturation for the main drying and wetting curve respectively and are model parameters.

Let us start with the model from Brooks and Corey B&C. For this case, the main branches are defined with the following functions:

$$S_e^d = \begin{cases} (a_d/s)\lambda^d, & s > a^d \\ 1, & s \leq a^d \end{cases}; \quad S_e^w = \begin{cases} (a_d/s)\lambda^w, & s > a^w \\ 1, & s \leq a^w \end{cases}$$

(8)

where $\lambda^d, \lambda^w, a^d$ and a^w are the material parameters, the last two (a^d and a^w) representing the air entry suction in each of the main branches [41]. Notice that each curve needs three parameters (including the residual degree of saturation) and therefore a single rule to avoid the overlapping (when the wetting and drying curve cross each other) does not exist. But for example, by setting $S_{nd}^d = S_{nd}^w$, the curves do not overlap only if $s \leq \lambda^d$.

For the van Genuchten model vG, the following relations are used:

$$S_e = \begin{cases} \frac{1}{1 + (\lambda^e/s)^{n_e}}, & s > \lambda^e \\ 1, & s \leq \lambda^e \end{cases}; \quad S_e^d = \begin{cases} \frac{1}{1 + (\lambda^e/s)^{n_e}}, & s > \lambda^e \\ 1, & s \leq \lambda^e \end{cases}$$

(9)

where $\lambda^e, \lambda^e, n_e$ and n_e are the model parameters. Similar to the model of B&C, by setting $S_{nd}^d = S_{nd}^w$ and $\lambda^d = \lambda^w$, the curves do not overlap only if $s \leq \lambda^w$.

The stiffness $\partial S_{nd}^{(d)}/\partial s$ can be rewritten with the effective degree of saturation:

$$\frac{\partial S_{nd}^{(d)}}{\partial s} = \frac{\partial S_{nd}^{(d)}}{\partial s} (1 - S_{nd}^{(d)})$$

(10)

Differentiation of Eq. (8) or (9) and replacing $s = s^{(d)}(S_w)$ yields to:

$$\frac{\partial S_{nd}^{(d)}}{\partial s} (S_w) = \frac{d^{(d)}(1/S_{nd}^{(d)})}{(d^{(d)})^{(1/S_{nd}^{(d)})}} $$

(11)
“intrinsic water retention curve” IWRC after [54]. The model from Sheng et al. [45] found a first order differential equation which links the degree of saturation S_w and the initial void ratio e_0 for the main branches. The model from Wheeler [9] used the modified suction $s^* = ne$, where $n = e/(1 + e)$ is the soil porosity, as primary variable to be consistent with the work-conjugated variables according to Houlbesy [7] and succeed to reproduce the observed dependence with the void ratio e.

Probably the simplest approach corresponds to the concept of “intrinsic water retention curves” IWRC and we adopt it for our model. This approach proposes the following general form to describe the main branches:

$$S_w = S_w^i(s, e); \quad S_w = S_w^e(s, e)$$

(13)

A notable example was given by Gallipoli et al. [52] where the van Genuchten curve [42] was extended to incorporate the void ratio dependence (see Fig. 3 for an example). The extended van-Genuchten curves for the main drying curve $S_w = S_w^i(s, e)$ and main wetting curve $S_w = S_w^e(s, e)$ are accordingly described with the following functions:

$$S_w^i = \frac{1}{[1 + (\alpha e_0^m s)^n]^{1-1/m}}; \quad S_w^e = \frac{1}{[1 + (\alpha e_0^m s)^n]^{1-1/m}}$$

(14)

where $m_e \geq 0$ is a new material parameter and for $m_e = 0$ the original equation is recovered.

Differentiation of Eq. (14) together with Eq. (7) gives:

$$\frac{\partial S_w^i}{\partial S} = \frac{\partial S_w^i}{\partial e} \frac{\partial e}{\partial S} = (1 - S_w^0)^{1/n} \left(1 - S_w^0 \frac{\partial S_w^i}{\partial e}(1 + e)\frac{\partial e}{\partial S} \right)$$

(15)

wherein $e_\nu = -\dot{v}_v$ is the rate of volumetric deformation. The partial derivatives $\partial S_w^i/\partial S$ and $\partial S_w^i/\partial e$ are evaluated at the main branches and therefore they are deduced by differentiation of Eq. (13) and replacing with $s = S_w^i$:

$$\frac{\partial S_w^i}{\partial S}(S_w, e) = \left(\frac{S_w^i}{S_w^e}\right)^{1-1/n} \left(\frac{S_w^i}{S_w^e}(e)^{1/n} \left(1 + \left(\frac{S_w^i}{S_w^e}e_\nu^m\right) \right)^{-2+1/n} \right) \times (1 - n e^\nu)$$

(16)

The projected suction $s^0(S_w)$ at the bounding branch S_w^i is found by solving the suction s for the current degree of saturation S_w in Eq. (8) or (9) and setting $s = s^0(S_w)$. Fig. 2a and b shows some simulations using the Brooks and Corey and van Genuchten curves as main branches respectively.

3. Extension of hydraulic model for deformable materials

In the last decades, the void ratio dependence in the main branches has been confirmed by several authors [50–54]. Fig. 1b shows the experimental results by Romero [50] using compacted Boom clay specimens with different initial densities which testify this dependence on the main drying curve. Other experiments also confirm that a similar effect is obtained for the main wetting curves [26].

Concerning to the constitutive modeling, the shift of the soil water characteristic curve SWCC can be obtained by different methods. The models from Sun et al. [26], Nuth et al. [54], Morvan et al. [44] and Masin [55] proposed a dependence between the air entry suction a and the void ratio e. The model from Galipolli et al. [52] established the equations of the main branches in the space $S_w - s - e$, which for constant void ratio $e = \text{const}$ is called

![Fig. 2. Model simulation using for the main branches description the equation from (a) Brooks and Corey and (b) van Genuchten.](image)

![Fig. 3. Extended van Genuchten curve for deformable materials proposed by [52].](image)
\[\frac{\partial S_i}{\partial e}(S_{iw}, e) = -m_s(g^{(2)} g^{(2)} g^{(2)})^{(1)} \times (1 + (g^{(2)} g^{(2)} g^{(2)})^{(1)} \cdot (n^{(2)} - 1) / e) \]

(17)

The new constitutive equation extended for deformable material is similar to Eq. (5) but with the additional term describing the void ratio dependence:

\[\hat{S}_w = \left(K_w - (1 - K_w) Y e^i \right) \frac{\partial S_i}{\partial e} \cdot \hat{S} - \frac{\partial S_i}{\partial e} \cdot (1 + e) \hat{e}_v \]

(18)

We note in Eq. (18) that \(\frac{\partial S_i}{\partial e} = \frac{\partial S_{iw}}{\partial e} \). According to Sheng et al. [45], the derivative \(\frac{\partial S_{iw}}{\partial e} \) must fulfill two constraints; the first is that for full saturation \(S_w = 1 \) it vanishes \(\frac{\partial S_{iw}}{\partial e} = 0 \). This can be easily proved by inspection of Eq. (17), which shows that \(\frac{\partial S_{iw}}{\partial e} \) is proportional to \((g^{(2)})^{(1)} \), factor which vanishes at \(S_w = 1 \) as well. The second constraint was postulated after experimental observation and establishes that under undrained conditions (constant gravimetric water content) and isotropic states, specimens subjected to wetting \(\hat{e} < 0 \) experience always volumetric contraction \(\hat{e} < 0 \) [45].

Accordingly, this is only possible if \(\frac{\partial S_{iw}}{\partial e} \geq -\hat{S}_w / e \).

However, the deduction of the mentioned constraint did not consider the existence of a residual degree of saturation \(S_{iw} \). In Appendix A we prove that the following constraint holds for undrained materials with \(S_{iw} > 0 \):

\[\frac{\partial S_i}{\partial e} \geq \frac{S_w - S_{iw}}{e} \text{ for } \hat{e} < 0 \]

(19)

The above constraint can be examined in our proposed model for a wetting path lying at the main wetting curve. One can show that the model satisfies this constraint when:

\[m_s \leq \left(\frac{n}{n-1} \right)^{-1} \]

(20)

which coincides with the result that one would obtain if applying the constraint given by [14] and supposing that there does not exist residual water \(S_{iw} = 0 \)

4. Mechanical model for isotropic states

The mechanical model will be limited to the simulation of isotropic states and is developed within the framework of hypoplasticity [56,36]. The mean Bishop stress \(p = (-1/3) \text{ tr } (\sigma) \) using \(\chi = S_w \) is selected as constitutive stress and we set the air pressure \(p_a = 0 \) as reference. The selection of \(\chi = S_w \) obeys to thermodynamical considerations which can be found in [7,5]. Considering the aforestated lines, we simplify the mean Bishop stress \(p \) to:

\[p = p^{\text{net}} + S_w \hat{e} \]

(21)

and by differentiation yields to:

\[p = p^{\text{net}} + S_w \hat{e} \hat{S} + S_w \hat{e} \hat{S} \]

(22)

Let us briefly describe the hypoplastic model for the case of saturated states \(S_w = 1 \). The constitutive model is written in terms of the rate of the mean Bishop stress \(\dot{p} \) (see Eq. (22)) and the rate of volumetric strain \(\dot{e}_v = -\text{tr} (\epsilon) \).\(^3\) The general form of the constitutive equation is:

\[\dot{p} = K (\dot{\epsilon}_v - Y (\dot{\epsilon}_v)) \]

(23)

where \(K \) is the Bulk modulus and \(Y \) is the degree of non-linearity for isotropic states. Due to the mathematical structure of Eq. (23), one can adjust the factors \(K \) and \(Y \) such that Eq. (23) coincides with a particular equation for isotropic loading \((\dot{\epsilon}_v > 0) \) and unloading \((\dot{\epsilon}_v < 0) \).\(^4\) For this purpose, we introduce the maximum void ratio \(e \), as a function of the mean Bishop stress \(e = e(p) \), which is equivalent with the normal consolidation line in the case of clays:

\[e = e(p) = e_{ct} - \lambda \log \left(\frac{p}{p_{ct}} \right) \]

(24)

where \(\lambda \), \(e_{ct} \) and \(p_{ct} \) are material parameters. The Bulk modulus \(K \) is adjusted to reproduce the stiffness at the normal consolidation line and yields to the following relation:

\[K = \frac{(1 + e)p}{\lambda(1 - Y_{im})} \]

(25)

where \(Y_{im} \) corresponds to the maximum value of \(Y \) and is defined as:

\[Y_{im} = \frac{r_{km} - 1}{r_{km} + 1} \]

(26)

and \(r_{km} \) represents the maximum value that can take the ratio between the bulk modulus for unloading and loading. The experiments indicate that these values are reached when the mean Bishop stress \(p \) lies at the maximum (Hvorslev) stress \(p_i \) for the current void ratio \(e \) which can be solved from Eq. (24):

\[p_i = p_{ct} \exp \left(\frac{e_{ct} - e}{\lambda} \right) \]

(27)

\[e_{ct} \] for \(e = e_{ct} > 0 \) compression is positive.

\[e \] see Appendix B for example with hydraulic model.
In order to make a smooth transition between the overconsolidated and normally consolidated state, the factor \(Y_i \) is proposed to interpolate between the values \(Y_i = 0 \) at \(p = p_i \) and \(Y_i = Y_{\text{lim}} \) at \(p = p_i \), as follows:

\[
Y_i = \frac{r_e - 1}{r_e + 1} \quad (28)
\]

\[
r_e = 1 + (r_{\text{lim}} - 1) \left(\frac{p}{p_i} \right)^{n_i} \quad (29)
\]

The exponent \(n_i \) controls the interpolation from Eq. (29) and is set in the current work to \(n_i = 2 \) for default. An example of isotropic test for saturated states is given in Fig. 4a using Pearl clay parameters (see Table 1), with two cycles of unloading–reloading. As all hypoplastic models, the proposed model presents always plastic accumulation and the normal consolidation line behaves as an asymptote for loading paths.

For unsaturated states, it is well accepted that the normal consolidation line depends additionally on the hydraulic variables \(s \) or \(S_w \) (or both). For constant suction \(s = \text{const} \), some authors have shown that the position of the normal consolidation line is not fixed and it depends rather on the degree of saturation \(S_w \) [27]. Therefore we set the degree of saturation \(S_w \) as the only hydraulic variable describing the normal consolidation line, i.e. \(e = e(p, S_w) \). We desire that the proposed model is capable of simulating very loose samples which can present very high void ratio \(e \) located above the normal consolidation line for \(S_w = 1 \). This would be consistent with proposal by Zhang et al. [57] who based on experimental results, proposed to translate the normal consolidation line in the vertical direction depending only on the degree of saturation \(S_w \) or also with the model from Gallipoli et al. [21] who presented an increasing reference void ratio \(N \) (for \(p = 1 \text{ kPa} \)) and compression index \(\lambda \) with increasing bounding factor \(\zeta = (S_w, S_{\text{sat}}) \). On the other hand, the model from Zhou et al. [27] can simulate this particular state only if \(p \) is large enough considering that the reference void ratio \(e = N \) is a constant, requirement imposed after observing that the model from Gallipoli et al. [21] fail the neutral loading test for constant Bishop mean stress \(p = \text{const} \) and increasing suction \(s > 0 \) (see Sheng [14]). We remind that the proposed model is hypoplastic, and therefore the normal consolidation line acts as an asymptote curve also known as “state boundary surface” [58] and not as a yield surface, i.e. its formulation is not subjected to any plasticity constraint.

For instance let us propose a normal consolidation line with increasing \(\lambda \) for decreasing \(S_w \), such that the current state can reach high void ratios \(e \) for very low \(p \). Fig. 4b illustrates the desired relation for several \(S_w \), and shows that all of these lines intercept at the point with coordinates \(e_{\text{sat}} \) and \(p_{\text{sat}} \), considered herein as material parameters. One might criticize this relation by pointing that for \(p > p_{\text{sat}} \), the normal consolidation lines show an undesired response with the degree of saturation \(S_w \), but we assume that the parameter \(p_{\text{sat}} \) is large enough (>5 MPa) to limit our model for stresses below this value or equivalently, that the samples can only reach such very high pressures only at saturated states \(S_w = 1 \). On the other hand one can propose other relations to avoid this shortcoming, e.g. and exponential relation in the \(e \) vs. \(p \) space, as in [59], but it would increase the complexity of the model. Hence, let us adopt the model schematized in Fig. 4b and propose the following equation for the compression index \(\lambda \) :

\[
r = r(S_w) \quad (30)
\]

\[r = 1 + (r_m - 1)/(1 - S_w)^{n_s} \quad (31)\]

where \(r_m \) and \(n_s \) are material parameters. The parameter \(r_m \geq 1 \) is the value of \(r \) when \(S_w = 0 \), and \(n_s \) controls the interpolation between the states \(S_w = 0 \) and \(S_w = 1 \). We note that the effect obtained for the normal consolidation line depicted in Fig. 4b is similar to the one proposed by Sun et al. [26], but therein they formulated the compression index \(\lambda \) as a function of the initial void ratio \(e_0 \) and the suction \(s \). So far the proposed equations simulate well the mechanical behavior as long as the degree of saturation \(S_w \) remains constant \(S_w = 0 \). However, for changes of \(S_w \) or \(s \) the model is not able to reproduce the volumetric contraction \((e_0 > 0) \) observed sometimes during wetting. This effect can be modeled if we introduce the following term in the constitutive equation (Eq. (23)):

\[
\dot{p} = K \left(\dot{e}_v - Y_i |\dot{e}_v| + \dot{y}(-\dot{s}) \sqrt{3} \right) \quad (32)
\]

where \((-\dot{s}) = -\dot{s} \) for \(s < 0 \) and zero otherwise. We desire that \(e = 0 \) when \(S_w = 1 \) to be consistent with the model for full saturated case, constraint that will be proved later on. For normally consolidated states such that \(e = e(p, S_w) \), the experiments show that during wetting \(\dot{s} < 0 \) under constant net stress \(p_{\text{net}} = \text{const} \), the void ratio \(e \) remains always at the normal consolidation line described by the function \(e = e(p, S_w) \) (see Eqs. (24), (30)). However, our model is based on the mean Bishop stress \(p \) and therefore it is simpler to calculate the amount of volumetric contraction that would be experienced under constant \(p \) rather than constant \(p_{\text{net}} \). In the following lines, we will find an expression for \(Y \) (see Eq. (32)) that reproduces this effect under \(p = \text{const} \) and later on we will show that under
\[p^{\text{net}} = \text{const} \] a similar effect as in the experiments is obtained. This procedure presents a similar reasoning as the one presented in the work of Masin and Khalili [37], with the difference that we are considering a coupled hydraulic model.

For the case than \(e = e_i(p, Sw) \), the volumetric strain rate \(\dot{e}_v \) at constant mean Bishop stress \(p = \text{const} \) is given by:

\[\dot{e}_v = \frac{-1}{(1+e)} \frac{\partial e_i}{\partial p} Sw \] (33)

Replacing Eq. (33) in the relation \(\dot{S}_w = (\partial S_w/\partial e_v) \dot{e}_v + (\partial S_w/\partial y) \dot{y} \) results in:

\[\dot{S}_w = A \dot{S}_w \]

\[A = \frac{\partial S_w}{\partial S} \left(1 + \frac{1}{(1+e)} \frac{\partial e_i}{\partial e_v} \frac{\partial e_i}{\partial p} Sw \right) \] (34)

where \(A \) is a factor which gives \(A = \partial S_w/\partial e \) for non-coupled hydraulic models and \(A = \partial S_w/\partial y \) otherwise. If we replace Eqs. (33) and (34) in (32) and by imposing the constraints \(p = 0 \) and \(\dot{e}_v > 0 \) one obtains the following relation solved for \(y \):

\[y = \frac{f_u Y_i - 1}{\sqrt{3} (1+e)} \frac{\partial e_i}{\partial S_w} \] (35)

Notice that when \(Sw = 0 \) our hydraulic model gives \(\partial S_w/\partial y = 0 \) which results with \(y = 0 \). Hence at saturated states with \(Sw = 1 \) the model recovers the Eq. (23). The function \(y \) was derived for normally consolidated states whereby \(p = p_i \). However, for overconsolidated states \(p < p_i \) the experiments show that the volumetric contraction is much smaller (sometimes even expansion) and following [37], we multiply the function \(y \) by a factor \(f_u \) such that:

\[y = \frac{f_u Y_i - 1}{\sqrt{3} (1+e)} \frac{\partial e_i}{\partial S_w} \] (36)

This factor is equal to one \(f_u = 1 \) when \(p = p_i \) in order to recover the relation at Eq. (35) and less than one for overconsolidated states \(p < p_i \):

\[f_u = \left(\frac{p_i}{p} \right)^{n_u} \] (37)

By trial and error, we have found that setting \(n_u = 2 \) reproduces well the collapse behavior due to wetting at constant net stress of samples with different void ratios. Of course, the user may adjust \(n_u \) to improve the simulations. The derivative needed in Eq. (35) is:

\[\frac{\partial e_i}{\partial Sw} = n_t(r-1)(1-Sw)^{n_t-1} \] (38)

Fig. 5 shows some simulations of volumetric contraction under wetting. If one starts at the point “a” located at the normal consolidation line for \(Sw = 0.5 \), and we apply a wetting path at constant mean Bishop stress \(p = \text{const} \), the void ratio \(e \) decays till the NCL for \(Sw = 1 \) is reached. Note that the same effect happens when one starts at point “b” (also at the NCL for \(Sw = 0.5 \)), but not when the initial point is below the NCL for \(Sw = 1 \), e.g. points “c” and “d”. For those cases, the volumetric contraction is much smaller due that the factor \(f_u \) is less than one \(f_u < 1 \) (Eq. (37)). Taking into account that factor \(y \) was adjusted to constant Bishop stress \(p = \text{const} \) and not to constant net stress \(p^{\text{net}} = \text{const} \), we proceed to examine the same wetting paths under \(p^{\text{net}} = \text{const} \) (dashed lines in Fig. 5).

Paths starting at points “a” and “b” show a contractant behavior ending approximately below the NCL for \(Sw = 1 \). The path starting at point “d” show little contraction and the path starting at point “c” shows expansion, behavior which can be expected in overconsolidated samples.

Fig. 5. Wetting paths at constant mean Bishop stress \(p = \text{const} \) and constant net stress \(p^{\text{net}} = \text{const} \) beginning with \(Sw = 0.5 \) and ending with \(Sw = 1 \).

Fig. 6. Simulation of isotropic compression at constant suction. Data from [26].
5. Material constants

In this section we describe briefly the material constants for the hydraulic and mechanical model and give a short guide for their determination. The parameters of the hydraulic model correspond to the ones developed in Section 3. In total the hydraulic model requires nine parameters if all the one describing the main branches (including the residual degree of saturation) differs from their counterparts in the other main branch. On the other hand, the mechanical model requires seven parameters. An optimal calibration of the hydraulic model is achieved if the intrinsic water retention curves IWRC are available. If they are not, some approximations can be done using the water retention curves of the IWRC. If these curves are not available, the pairs n^i and n'^i can be adjusted on water retention curves obtained with overconsolidated samples, whereby lower variations of the void ratio e during the test are expected. The parameters x', x'' are adjusted fitting the dependence of the air entry suction with the suction and a value for m_w must be chosen such that it shifts properly the curves to the right for denser states. We have experienced that a value of $m_w \approx 1.3$ is a good approximation for many soils. The assumption $S_{w} = S_{w}^d$ and $n^d = n'$ must not always hold, but is favorable to guarantee that the two main branches will not overlap each other.

The parameter κ_w must be calibrated at reversal points at the main branch at which $\psi^{(i)} = 0$ (see Eq. (6)). At this point, if the volume changes is sufficient small $e \approx 0$, the equation is reduced to $(\partial S_w / \partial s) = \kappa_w \left(\partial S_w^d / \partial s \right)$, and therefore κ_w can be calculated by measuring the current slope $(\partial S_w / \partial s)$ with the one at the bounding branch $(\partial S_w^d / \partial s)$. The exponent n_w can be calibrated by adjusting by trial and error the stiffness in a scanning line.

With respect to the mechanical model, the calibration of x^{sat} and c are obtained from isotropic tests with saturated samples by measuring the stiffness at loading and unloading respectively in the e vs. $\ln(p)$ space. The reference point fixed by the parameters e_{ref} and p_{ref} is obtained by extending the normal consolidation lines for paths with different suction values, and intercepting them in the NCL for $S_w = 1$. The parameter t_{ref} can be calibrated with a dry

![Fig. 7. Wetting–drying cycles under constant net stress $p^{net} =$ const. Data from [26].](image)
The numerical integration was performed with INCREMENTAL DRIVER, experimental tests presented by Sun et al. [26,60] which clearly show the coupled hydro-mechanical behavior of the material. The models were written in FORTRAN under the syntax of UMAT for the program ABAQUS using the entries for temperature as suction. The numerical integration was performed with INCREMENTAL DRIVER, developed originally by Niemens [61] and extended by the authors of the present work to encompass its capabilities for the integration of coupled hydro-mechanical models.5

Fig. 6 shows four samples subjected to isotropic compression at the same suction $s = 147$ kPa but different initial void ratios e_0. The experiments show that while the sample densifies, the degree of saturation rises. This behavior is satisfactorily captured due to the coupling of the hydraulic model with the void ratio, which parallel affects the current value of the compression index λ.

The Fig. 7 shows the wetting–drying cycles of a loose sample (Fig. 7a and b) and a dense sample Fig. 7c and d. The specimens were isotropically compressed and then drying–wetting cycles were performed at constant mean net stress $p^{net} = 20$ kPa. The simulations show that under constant mean net stress $p^{net} = $ const, the sample experiences volume contraction during the cycles (Fig. 7a and c) and a displacement of the SWCC (Fig. 7b and d) towards the right. The tests also show that after wetting some inclusted air remains for suction values lower than the water entry suction. The model was able to capture the volume contraction in the loose sample and the shift of the SWCC, however it assumes that $S_w = 1$ for $s = 0$ and therefore some discrepancies in the SWCC are appreciated after the wetting process.

Summary of equations.

Hydraulic model:
Given the functions $S_w = S_0^d(s,e)$ describing the main branches, the constitutive model is:

$$\hat{S}_w = \left(\kappa_w - (1 - \kappa_w)Y_{d,i}\right) \frac{\partial S_0^d}{\partial s} - \frac{\partial S_0^d}{\partial e}(1 + e)\hat{e}_p$$

for $\hat{s} > 0$ then $Y_{d,i} = Y_d$ and $S_0^d = S_w$ and for $\hat{s} < 0$ then $Y_{d,i} = Y_i$ and $S_0^d = S_s$.

The interpolation functions Y_d and Y_i are:

$$Y_d = \left[\log(Y_{d,i} / \hat{e}_p)\right]^{1/e_0}, \text{ for } \hat{s} > 0$$

$$Y_i = \left[\log(Y_{d,i} / \hat{e}_p)\right]^{1/e_0}, \text{ for } \hat{s} < 0$$

where s_d and s_i are the projected suctions at the main drying and wetting curve respectively.

Mechanical model (just for isotropic states):

Constitutive equation:

$$p = K(e_i - Y_i(\hat{e}_p) + \sqrt{3}y(-\hat{s}))$$

Hypoelastic relations:

$$K = \frac{(1 + e)p}{\lambda(1 - Y_{d,i})} Y_{d,i} = \frac{r_{km} - 1}{r_{km} + 1}$$

with $r_{km} = \lambda / K$

Hypoplastic relations:

$$Y_i = \frac{r_k - 1}{r_k + 1}$$

Suction factor:

$$y = \frac{f_a(1 - e)}{\sqrt{3} (1 + e) \frac{\partial e_i}{\partial S_0^d}}$$

6. Application of the coupled models in element tests

The capabilities of the model are evaluated by simulating the experimental tests presented by Sun et al. [26,60] which clearly show the coupled hydro-mechanical behavior of the material. The set of experiments includes isotropic tests at constant suction, drying-wetting cycles and isotropic test at constant suction followed by wetting. The parameters were found according to the short guide given in Section 5 and are listed in the last column of Table 1. We have chosen a simple explicit algorithm for the hydraulic and mechanical model, each of them with a substepping scheme. No control of the substep size was performed but a small size was selected to assure the numerical convergence (maximum substep size were $\Delta e_i = 10^{-4}$, $\Delta s = 1$ kPa).

The models were written in FORTRAN under the syntax of UMAT for the program ABAQUS using the entries for temperature as suction. The numerical integration was performed with INCREMENTAL DRIVER, developed originally by Niemunis [61] and extended by the

5. The new version of INCREMENTAL DRIVER can be free downloaded from http://www.rz.uni-karlsruhe.de/gn116.
Fig. 8 shows five samples with the same initial conditions (at $t = 0$, $e = 1.27$, $S_w = 0.55$ and $s = 145$ kPa) which were isotropically compressed at constant suction $s = $ const till a certain value of mean net stress p^{int}. This final value of p^{int} varies for each sample. Subsequently, the samples were wetted $\dot{s} < 0$ and experienced a volumetric contraction. The simulations captured this behavior but once more the remaining degree of saturation after the process of wetting was not captured.

7. Final remarks

The article presented two coupled hydraulic and mechanical models for the simulation of unsaturated soils at isotropic states. The models were developed under the framework of hypoplasticity and have shown that this formulation is able to simulate the observed experimental behavior without the introduction of yield surfaces and plastic variables as in other models. Some parameters are shared with other existent constitutive models making easy its understanding. Of course, there are some limitations which were observed. For example, the model is not capable to reproduce the remaining degree of saturation S_w after a wetting process ending at $s = 0$ (not always $S_w = 1$ holds). In addition, the formulation of the mechanical model was limited for the isotropic states and therefore an extension for the three dimensional case is needed. Currently, the improvement of the aforementioned limitations are being studied and a new compression law which does not overlap the normal consolidation lines is in development.

Acknowledgments

The authors express their acknowledgements to the financial support provided by the DFG (German Research Council) corresponding to the research group FOR 1136.

Appendix A. Constraint for undrained material with residual water

Given a representative volume, the gravimetric water content w and degree of saturation S_w are defined as:

$$ w = \frac{M_w}{M_i}, \quad S_w = \frac{V_w}{V_i}, \quad (A.1) $$

where M_i represents the mass of the phase $i = \{w, s, a, v\}$ ($w =$ water, $s =$ solid, $a =$ air, $v =$ $w + a$ are the voids) and V_i represents the volume of the phase i. Let us assume the water phase is decomposed into an active component and residual component such that $M_w = M_{w0} + M_{w1}$ and $V_w = V_{w0} + V_{w1}$ (the subindex $w0$ correspond to the residual component). The residual water phase corresponds to the water attached at the particles which does not disappear after a long process of drying. The active gravimetric content w_A and active degree of saturation S_A are defined as:

$$ w_A = \frac{M_w - M_{w0}}{M_i}, \quad S_A = \frac{V_w - V_{w0}}{V_i} = S_w - S_{w0} \quad (A.2) $$

where S_{w0} is the residual degree of saturation and we assume that its rate is equal to zero $S_{w0} = 0$. Using the relations above and defining the void ratio as $e = V_{i1}/V_i$, one can show that the following relation holds between w_A and S_A assuming incompressible constituents:

$$ S_A e = G_s w_A \quad (A.3) $$

where $G_s = (M_i V_w)/(M_i V_v)$ is the specific gravity considered by many authors a constant for a soil. The undrained condition is defined as $w = 0$. Taking into account that M_{w0} is a constant by definition, when $w = 0$ implies $w_A = 0$. Therefore the undrained condition can be written as:

$$ S_A e = S_A e = 0 \quad \text{or}, \quad S_A = \frac{S_A e}{e} \quad (A.4) $$

On the other hand, the hydraulic model is given by the following general equation:

$$ \dot{S}_w = \dot{S}_A + \frac{\partial S_w}{\partial s} \dot{s} + \frac{\partial S_w}{\partial e} \dot{e} \quad (A.5) $$

Replacing Eq. (A.4) in (A.5) yields to the following relation:

$$ - \left(\frac{S_A e}{e} + \frac{\partial S_w}{\partial e} \right) \dot{e} = \frac{\partial S_w}{\partial s} \dot{s} \quad (A.6) $$

Sheng and Zhou [45] postulate that wetting paths $\dot{s} < 0$ under undrained and isotropic conditions experience always volumetric contraction $\dot{e} < 0$. Considering that the derivative $(\partial S_w/\partial s)$ is always negative, the following constraint from Eq. (A.6) is revealed:

$$ \frac{\partial S_w}{\partial e} < \frac{S_A}{e} = - \frac{S_A - S_{w0}}{e} \quad (A.7) $$

which recovers the constraint from Sheng and Zhou [45] when $S_{w0} = 0$.

Appendix B. Rewriting the hydraulic equation as hypoplastic equation

Eq. (5) can be written as a set of two equations for the case of drying $\dot{s} > 0$ and wetting $\dot{s} < 0$:

$$ S_w = A_0 \dot{s} \quad \text{for} \quad \dot{s} > 0 \quad (B.1) $$

$$ \dot{S}_w = A_1 \dot{s} \quad \text{for} \quad \dot{s} < 0 \quad (B.2) $$

where $A_0 = \partial S_w/\partial s(\kappa_w - (1 - \kappa_s)\kappa_s)$ and $A_1 = \partial S_w/\partial e(\kappa_w - (1 - \kappa_s)\kappa_s)$. The following relation is equivalent to the previous set of equations:

$$ \dot{S}_w = - \frac{1}{\tau} (A_0 + A_1) \dot{s} + \frac{1}{\tau} (A_0 - A_1) |\dot{s}| $$

which recovers the classical mathematical structure of hypoplastic models as in [30] when setting $L_s = (A_0 + A_1)/2$ and $N_s = (A_0 - A_1)/2$:

$$ \dot{S}_w = L_s \dot{s} + N_s |\dot{s}| $$

References

